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Certain exact solutions have been derived for the nonlinear heat- where o is a constant equal to the value of the anti-
conduction problem for boundary conditions of the fourth kind. derivative at the lower limit.
On the basis of the method proposed by the authors With (2.1) we modify (1.6) to the form
in [1], we have derived exact solutions for the heat- du du
conduction problem under boundary conditions of the i = QEE—&—f (w), (2.2)
fourth kind. The thermophysical parameters are func-
tions of temperature. where
§1. Let us examine the system of equations - =
f@) = c(®)y Oy (8) = c(u) v W)/ (u).
€ (6)) \,1(91)‘& — i A (0, )661 ) By means of the substitution
ot 0x dx
du/dt = .
(t>0, x>0), (1.1) uidE = () (2.3)
0, 9 40, we reduce (2.2) to the form
€5 (8y) Vo (B)) — = ( A (82) )
ot T ox ox de ;
— F{u)= —2¢, 2.4

(t>0, x<0) (1.2) du @ : 2.4

for the following boundary conditions: where
Fu) = [f @I (2.5)

B (x, 0) =0, (x>0), B8(x, 0) =0y (x<0); (1.3)

]
61(09 l‘)=92(0, t)v }"1 0 1(0’ l) =7\'2 662 (O, t) E] (1'4)
ax 0x
where 84 and 6y, are constants.
We assume that
| %]
= ! , (1.5)
: 2Vt

so that with consideration of (1.5) Egs. (1.1) and (1.2)
assume the form

dg{l(o }—~2§d9§1mel>v(ea (1.6)

i =0

which we will solve for the boundary conditions

E—g 2 (6,)V (9s), (1.7)

[Ble=w = 01, [Oafz=o == Bay; (1.8)
dao de
= -3 e} 22 o (1.
Blims = Belew }hl[dﬁ L 0 [dE L-—o P (1.9)

§2. Let us indicate the method of solving equations
of the form of (1.6) and (1.7) (we drop the subscripts).
Let us introduce the substitution

<]
u:j‘h(e)de—}-a, (2.1)
B

Differentiating with respect to¢ in (2.4) and assum-
ing that

y=9V F(u, (2.6)
we obtain
g+ 1wy =—2/y, (2.7
where
@) = %}—{2llnf(u)]”—(llnf(u)l’)'z}- (2.8)

§3. Let us investigate Eq. (2.7).
Let us assume

I(w =B, (3.1)

where B is a constant.
Let

B+ 0. (3.2)

Equation (2.7) then assumes the form
Y +By=—2y. (3.3)
Its solution is

| 75 ies
U= -
P VD-41ny'——ﬁy'

+ 4, (3.4)

where D and A are constants.
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Having solved (3.1) with consideration of (3.2}, we
find that the function F(u) can assume the following
form:

fu)=Rexp[+V =B ul, (38.5)

M
cos? [VP (u -+ K)

fw) = #>0, (3.6

flw) = il
ch? [V —P (u+ K)

B<0, [thiy —B @+Kjij<1), (3.7
_ N
= s WV —B (u+ K)]
B<O, [th{]y —P (+K1|>1), (3.8)

where R, M, N, and K are constants.
Let

B=0. {3.9)

In this case solution (8. 3) is derived from (3.4) with
consideration of {3.9)}.
Solution (3.1) with consideration of {3.9) yields

(3.10)
(3.11)

f(u) = B»
f(u) = af{u + b)zv

where B,a, and b are constants.

§4. Consequently, for cases (3.5)-(3.8) and (3.10)
and (3.11) we have derived a solution in quadratures
in the form of (3.4).

From the systems of equations

c(8) Y (8V/A (8) = f(w),
8

u=(2(0)d6 +a, (4.1)
&

eliminating u, we find the form for the variable ther-
mophysical parameters for cases (3.5)~(3.8) and(3.10)
and (3.11), arbitrarily specifying the form of any two
parameters.

The formula

8
c{e)y(e)=me)f“z(e)de+a] 4.2)
N

is convenient to find c(8)y(F) from the given A(f);
however, it is not convenient to find A(8) from c(9)
and y(0). In the latter case differentiation in (4.2)
should be employed to derive the equation for the de-
termination of A(8).

§5. Solutions (1.6) and (1.7), respectively, have
the forms

£

dy

+ Ay, {5.1)
5 VD —dny—B y* !

Uy =

Yz

dy
, VD, —4lny—pyy°

4 Ay (5.2)

Ug =

INZHENERNO-FIZICHESKII ZHURNAL

Boundary conditions {1.8) and (1.9), with considera-
tion of (2.1), assume the forms

[tils=e = Oy, (5.3)

[Ugle=o = aty, (5.4)
[B1]e=p '
[lemy = ‘y M (B)d 0+ a; =D (10)s =), (5.5)

B10

[ }3:(}

o= | %©)d0+0=D(B)=),  (5.6)
820

where ®,(0;) and &,(0;) are the antiderivatives of the
functions in (5.5) and (5. 8), respectively. We denote

[ul]ﬁ—*—o = m’ [u2]§=0 = ﬂ" (5' 7)

where m and n are constants.
From (5.5) and (5. 6), with consideration of (5.7),
we find

[l = Falml,
[Oalz—p = ¥ [nl,
and, substituting into (1.9}, we obtain
¥y [m] = ¥, [nl]. (5.8)

The second condition in (1.4), with consideration of
(2.1), (2.4) and (2. 6), assumes the form

Y1 Yo
— e = 2 . (5.9)
( Vv Fy (u1}>u1=m ( vV F, (ug)i)ucmn

The constants in (5.1} and (5.2) are found from (5.3},
(5.4) and (5.8}, {5.9). Since

d

{ dug ] = fo1 ()leme, = 0, (5.10)
du, . _

I: dt :I§=oe = [P (uz)]ug=a3 == 0 (5.11)

and it follows from (2. 4) that

{_d _‘911 - {L‘Pﬁ =0 (5.12)
diy Ju=m dug ty=mn

{(we assumethat{FI(ui)}uizm =0 and [Fz(uz)]ufn = 0},

~ so that boundary conditions (5.1) and (5.2), with con-

sideration of (2.8) and (5.10)—(5.11), are written as
follows:

Y1, =a, = (91 V F1)lei=0, =0, (5.13)
el = @5 V Fy (a)ityma. = 0, {5.14)
and since
de _dy 1 Fiwy
duy duy vV Fi{uy) 2P {u) V Folwy)
with consideration of (5.12) we obtain
do ,[ dy, _Fiiul)_!ﬂ} " =0 (5.15)
{ du, ]u1=m T duy 2F () Juy=m



JOURNAL OF ENGINEERING PHYSICS

and analogously

[ 4o, } - [ dy, _ Fé(”z) yz]
diy Ju=n du, 2F, (uy)

=0. (5.16)
U,=n
Substituting (5.1) and (5.2) into (5.13) and (5.14), res-
pectively, we find that

Ay =ay, Ay =a,. (5.17)
Substituting (5.1) and (5.2) into (5.15) and (5.186), res-
pectively, we derive a system of equations from which
we define the constants Dy and D;:

/ F;(uﬂ % |
| 5 Fi -
v o=t = — Gl o

Fa(u
(1/ Dy —4lny,— Pyi— ;F(*‘jztgz)u :n= 0,

Wy (m) = ¥ (n),

( L) _ _( __y‘_>
1 rFl (1) Juy=m - v F, (Us) uz:,l’
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1 d
Y
U = aq,
' jvm—uw—mw+l
Yz
dy
Uy == +a »
? J VDi—4iny—B:y *
[lemo =m, [Uslemo =n. (5.18)

After we have foundthe constants from system (5.18),
from (5.1) and (5.2)—considering (2.3) and (2.6)—we
find uy and uy as functions of £. Finally, we obtain
an answer in the form

0, (x, £) = W¥ilud, B,(x, ) =W, lu].  (5.19)
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